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Abstract

The fluid reaction on a wide rectangular cantilever plate vibrating in a viscous fluid is constructed by superposition of a

potential flow solution and an asymptotic correction built from the Navier–Stokes equations for an incompressible fluid

with nonlinear terms neglected. Using the Wiener–Hopf method, a simple analytic expression for the fluid reaction is

obtained for high values of the dimensionless parameter b, which is the frequency times the length of the plate squared

divided by the kinematic viscosity. Fluid and structure motion are then coupled when solving the equation of motion of the

plate with a fluid reaction expressed in terms of weighted averages of the velocity of the plate. The frequency response is

then calculated for plates of different sizes and materials and the results are shown for a gas and a liquid.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this article is to provide a method to calculate the frequency response around the first mode
of vibration of a thin rectangular plate vibrating in a viscous fluid. The plate is clamped on one edge while the
other three edges are free, and performs harmonic vibrations.

The first mode of vibration corresponds to pure bending, where the amplitude of the movement is greater
the farther from the clamped edge and all the points in the plate move in the same direction (upwards or
downwards) at every instant.

The motivation of this work is to provide a theoretical model that can be used in the design and
interpretation of density and viscosity sensors. The particular sensor considered here consists of a plate where
by design only the pure bending modes can be excited, and for practical reasons the first mode is preferred for
measuring purposes.

Since the plate considered in this study is wider than it is long (see Fig. 1), it is assumed that all longitudinal
cross sections behave equally, with negligible effect of the two parallel free edges and a predominant
importance of the third free edge. Therefore, the problem is reduced to planar flow, treating only one
longitudinal cross section. However, it is important to single out that this planar flow is not representative of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic drawing of the cantilever plate, clamped on one edge and with thickness T, length L and width W, where T5L;W and

L �W or LoW .
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geometries where the width of the plate is smaller than the length, because then the effect on the parallel free
edges is not negligible.

In the literature there exists work on vibrating plates of different geometries interacting with fluids in
the inviscid limit. In this study, the viscosity cannot be neglected because the sensor measures it together with
the fluid density. Geometries similar to the cantilever plate in viscous fluids have been reported, notably
cantilever beams.

The complexity of the models varies widely, owing to different approximations for the structure, the fluid
behaviour and the coupling of the two motions. The reaction of the fluid on the beam is modelled as the
reaction on a sphere in Refs. [1–3]. Other works are based on the vibration of a cylinder modified empirically
for a rectangular cross section [4]. Another method is to approximate the fluid reaction for every cross section
as the reaction on an infinite beam with the same cross section and amplitude of vibration [5].

In Refs. [2,6,7], the structure of the cantilever is modelled as a spring–mass system leading to a simple
harmonic oscillator motion, where in general the action of the fluid is reflected in the equations by an added
mass and a damping coefficient. In other cases the equations of a vibrating beam as in Weaver et al. [8] are
used, for example in Ref. [9] or Ref. [10]. Nevertheless the effect of the fluid is again represented as an added
mass and damping coefficients that are independent of position along the beam. The most complete treatment
to date is proposed by Sader [5], where the dependence of the fluid on position is kept. However, the fluid
reaction is modelled as a complex added mass coefficient and not as an external force.

In this paper, the equation of motion of the plate is obtained from the balance of forces acting on it. The
driving force together with the fluid reaction force and the elastic restoring force are balanced by the plate
acceleration force. This driving force is usually known, also the elastic restoring force takes a known
expression for thin plates but the fluid reaction is to be determined.

The first part of this work deals with obtaining an expression that relates the pressure of the surrounding
fluid on the plate to the vertical velocity of the plate uz, for a given frequency of vibration. This expression
constitutes the fluid reaction needed to solve the balance of forces on the plate.

The second part of this work explains a method for solving the equation of motion and obtaining the
amplitude of the vibration as a function of position and the frequency o.
2. Asymptotic solution for an infinitely wide cantilever

This section deals with the asymptotic study of an infinitely wide cantilever of length L for large values of
the dimensionless parameter b characterising the flow, defined as

b ¼
oL2

n
, (1)

where o is the frequency of vibration, L is the length of the plate and n is the kinematic viscosity of the
surrounding fluid.

First of all, a potential flow solution for the geometry of an infinitely wide plate is obtained in Section 2.1.
This solution represents the first term in the asymptotic expansion, because it is the solution in the limit when b
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tends to infinity. Section 2.2 shows the correction to the potential solution, by solving a semi-infinite problem
with the Wiener–Hopf method.

The plate is located in the plane z ¼ 0 along the x-axis between x ¼ 0 (clamped end) and x ¼ 1 (free end)
when x and z are made dimensionless by dividing by the length of the plate, L (see Fig. 2). All variables are
dimensionless. The velocity components ux, uz are scaled with respect to a reference velocity U and the
pressure p is dimensionless after being divided by the product orLU .

An important magnitude that leads to the fluid reaction on the plate is called the pressure differential across
the plate and is defined as

½p� ¼ pjz¼0þ � pjz¼0� . (2)

2.1. Potential flow approximation

The limit when b tends to infinity corresponds to inviscid flow. We make the following assumptions:
�

Fig

end
the amplitude of the vibrations is very small,

�
 the thickness of the plate is negligible,

�
 the medium is considered to be infinite, with no wall effects,

�
 the fluid is incompressible with density r.
These assumptions together with the fact that we impose the condition that the viscosity is zero, lead to
the potential flow approximation. The Navier–Stokes equations and the continuity equation are then reduced
to [11]

ux ¼
qf
qx

, (3)

uz ¼
qf
qz

, (4)

p ¼ if. (5)

The potential f has to satisfy Laplace’s equation

r2f ¼ 0. (6)

Laplace’s equation has solution

f ¼ y ¼ arctan
z

x

� �
. (7)
. 2. The plate is represented by the line going from a ðx ¼ 0; z ¼ 0Þ, which is the clamped end, to b ðx ¼ 1; z ¼ 0Þ, which is the free

, in the scaled coordinate system.
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Moving the origin to x ¼ s and superposing over s one obtains

f ¼
Z þ1
�1

f ðsÞ arctan
z

x� s

� �
ds, (8)

where f ðsÞ is a function to be determined from the boundary conditions. The appropriate branch of the
arctangent is chosen and at z ¼ 0þ for xos it takes the value p while for x4s the arctangent is zero. At z ¼ 0�

the arctangent takes the opposite sign.
The boundary conditions are imposed on the plane z ¼ 0 where the plate is located
�
 The tangential velocity, ux, is continuous and equal to zero

uxjz¼0þ ¼ uxjz¼0� ¼ 0. (9)

This condition is not satisfied by the potential flow solution, and, to take account of it, the solution of the
potential flow will need to be corrected for.

�
 The vertical velocity, uz, is continuous everywhere and known for the plate, but unknown outside the plate

uzjz¼0þ ¼ uzjz¼0� ¼

unknown function; xo0;

uzðxÞ; 0oxo1;

unknown function; x41:

8><
>: (10)
�
 The pressure differential is unknown for the plate, but known and equal to zero outside the plate for x41.
At the other side of the plate (beyond the clamped end) we do not expect the pressure to be zero, but to be
finite. It will be shown later that for xo0 the pressure differential takes a constant value. This value
represents the effect of the clamping on x ¼ 0, thus

½p� ¼

finite xo0;

unknown function to be determined; 0oxo1;

0; x41:

8><
>: (11)

From Eq. (8) and condition (11) the potential at z ¼ 0þ can be written as

f ¼ p
Z 1

x

f ðsÞds. (12)

The vertical velocity can be obtained as the derivative of the potential from Eq. (8) with respect to z. Applying
the boundary condition on the vertical velocity from Eq. (10) one obtains the following integral equation for
the plate

uzðxÞ ¼

Z 1

0

f ðsÞ

x� s
ds; 0oxo1, (13)

where the singular integral on the right is defined as a Cauchy principal value as are subsequent integrals. The
general solution of such an integral equation can be found in Ref. [12] and gives the following expression for
f ðsÞ

f ðsÞ ¼
1

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1� sÞ

p Z 1

0

uzðx
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð1� x0Þ

p
x0 � s

dx0 þ
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sð1� sÞ
p , (14)

where A is a constant that is determined here by imposing a finite pressure differential (finite potential) at
x ¼ 0. Thus,

A ¼
�1

p2

Z 1

0

uzðx
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0

x0

r
dx0. (15)
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The distribution f ðsÞ can thus be re-written as

f ðsÞ ¼

ffiffi
s
p

p2
ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

Z 1

0

uzðx
0Þ

x0 � s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0

x0

r
dx0. (16)

Once the function f ðsÞ is known, the potential can be determined using Eq. (12) and the tangential velocity can
be obtained by taking the derivative of the potential above with respect to x, from Eq. (12) one gets,

ux ¼ �pf ðxÞ; xo1. (17)

From Eqs. (17) and (16) one can see that the no-slip condition is violated, and moreover the tangential velocity
has a singular behaviour at the edge of the plate with

uxjx¼1� ¼
Bffiffiffiffiffiffiffiffiffiffiffi
1� x
p , (18)

where B is a weighted average of the vertical velocity over the plate,

B ¼
1

p

Z 1

0

uzðx
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ð1� x0Þ
p dx0. (19)

This tangential velocity is not acceptable and needs to be corrected for.
Though the interest of the fluid behaviour is centred on the pressure differential across the plate, the vertical

velocity outside the plate on the plane z ¼ 0 can also be calculated with the same equations as before. The
vertical velocity uz can be obtained from Eq. (13). The first term of the expansion for the vertical velocity at the
free edge just outside the edge is singular and takes the expression

uzjx¼1þ�
�Bffiffiffiffiffiffiffiffiffiffiffi
x� 1
p . (20)

2.2. Correction to the potential flow solution

The equations that we need to solve here are the Navier–Stokes equations and the equation of continuity
with the following assumptions:
�
 the amplitude of the vibrations is very small,

�
 the thickness of the plate is negligible,

�
 the medium is considered to be infinite, with no wall effects,

�
 the fluid is incompressible with density r,

�
 the fluid is assumed to be Newtonian with kinematic viscosity n.
Neglecting the nonlinear terms and with no influence of the variable y, we write [11]

�iux ¼ �
qp

qx
þ

1

b
r2ux, (21)

�iuz ¼ �
qp

qz
þ

1

b
r2uz, (22)

qux

qx
þ

quz

qz
¼ 0, (23)

with

r2 ¼
q2

qx2
þ

q2

qz2
. (24)
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A stream function c is introduced such that

ux ¼ �
qc
qz

, (25)

uz ¼
qc
qx

. (26)

After eliminating the pressure term in the Navier–Stokes equations one finds that

r2ðr2 þ ibÞc ¼ 0. (27)

The interest of this study lies in the cases where b is large. Indeed the potential flow solution corresponds to a
first-order approximation where b tends to infinity. In this correction, the behaviour at the edges needs special
attention, where the previous solution is least satisfactory. Consequently the change of coordinates illustrated
in Fig. 3 is proposed, we write

x ¼ 1þ eX , (28)

z ¼ eZ, (29)

where e is a small dimensionless number. In this new coordinate system the plate is located on the negative X-
axis and

r2 ¼
1

e2
q2

qX 2
þ

q2

qZ2

� �
. (30)

In order to make both terms in Eq. (27) comparable we take

e ¼
1ffiffiffi
b

p . (31)

Using the Fourier transform F ¼
Rþ1
�1

FeizXdX and knowing that we seek solutions that tend to zero at
infinity, from Eq. (27) one finds

c ¼
B1e
�

ffiffiffiffiffiffiffi
z2�i
p

Z � iA1e
�jzjZ; Z40;

B2e
þ

ffiffiffiffiffiffiffi
z2�i
p

Z � iA2e
þjzjZ; Zo0;

8<
: (32)

with
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p
and jzj defined to have positive real part; and where A1, A2, B1 and B2 are functions of z to be

determined from the boundary conditions. From c, the expressions for ux and uz are easily obtained, also p
Fig. 3. In the coordinate system proposed in Eqs. (28) and (29) the plate is represented by the line from A ðX ¼ �1=e; Z ¼ 0Þ to

B ðX ¼ 0; Z ¼ 0Þ. These points correspond respectively to a and b from Fig. 2. Note that when b tends to infinity, e tends to zero and the

plate is located in the negative semi-infinite plane Z ¼ 0, Xo0.
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using Eq. (22).

ux ¼
þB1

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p
e�

ffiffiffiffiffiffiffi
z2�i
p

Z � ijzjA1e
�jzjZ; Z40;

�B2

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p
eþ

ffiffiffiffiffiffiffi
z2�i
p

Z þ ijzjA2e
þjzjZ; Zo0;

8<
: (33)

uz ¼
�izB1e

�

ffiffiffiffiffiffiffi
z2�i
p

Z � zA1e
�jzjZ; Z40;

�izB2e
þ

ffiffiffiffiffiffiffi
z2�i
p

Z � zA2e
þjzjZ; Zo0;

8<
: (34)

p ¼
þie jzjz A1e

�jzjZ; Z40;

�ie jzjz A2e
þjzjZ; Zo0:

8<
: (35)

We write the boundary conditions at Z ¼ 0 for this new solution as
�
 The velocity components are continuous across the plane Z ¼ 0,

uxjZ¼0þ ¼ uxjZ¼0� , (36)

uzjZ¼0þ ¼ uzjZ¼0� . (37)
�
 The tangential velocity outside the plate is zero and on the plate cancels the velocity ux from Eq. (18), hence

uxjXo0 ¼ �
Bffiffiffiffiffiffiffiffiffiffi
�eX
p , (38)

uxjX40 ¼ 0. (39)
�
 The vertical velocity is zero on the plate and unknown outside (the potential flow solution accounted
exactly for the vertical component of the velocity, so no additional contribution is needed),

uzjXo0 ¼ 0, (40)

uzjX40 ¼ unknown function. (41)
�
 The pressure differential on the plate is unknown and zero outside,

½p�jXo0 ¼ unknown function, (42)

½p�jX40 ¼ 0. (43)

The first consequence of these boundary conditions is that A1 ¼ A2 and B1 ¼ B2. Thus the pressure
differential takes the following expression

½p� ¼ 2i
jzj
z

A1. (44)

Now the expression of the pressure differential correction is obtained using the Wiener–Hopf method [13, p.
376]. In this method half Fourier transforms are introduced as

F� ¼

Z 0

�1

FeizXdX , (45)

where the integral converges for ImðzÞo0, and F� is a ‘minus function’ because it is analytic in the semi-
infinite plane ImðzÞo0 and it is denoted with a subindex ‘-’. In the same way

Fþ ¼

Z þ1
0

FeizXdX , (46)
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where the integral converges for ImðzÞ40, so Fþ is a ‘plus function’ to signify that it is analytic in the semi-
infinite plane ImðzÞ40.

From the boundary conditions, the transform of the velocity components and the pressure differential can
be classified as plus or minus functions depending on the region where they are not zero. Thus there are two
minus functions ux ¼ ux� and ½p� ¼ ½p�� and one plus function uz ¼ uzþ. In addition the expression of the
tangential velocity is known from Eq. (38). The Fourier transform of ux takes the form

ux� ¼ ei3p=4
ffiffiffi
p
p Bffiffi

e
p

1ffiffiffi
z
p
�

. (47)

Then at Z ¼ 0 we have three equations (33), (34) and (44) with 4 unknowns A1, B1, uzþ and p½ ��. After
elimination of A1 and B1 and using Eq. (47) for the expression of ux� the following functional equation is
obtained:

uzþ ¼
jzj

2ðz2 � iÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p
jzj þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p ½p�� þ eip=4
ffiffiffi
p
p Bffiffi

e
p

ffiffiffi
z
p
�ffiffiffiffiffiffiffiffiffiffiffiffi

z2 � i
p . (48)

This equation is rearranged to have all the plus functions on the left-hand side and all the minus functions on
the right-hand side as follows

zþ eip=4ffiffiffi
z
p
þ

Hþuzþ � eip=4
ffiffiffi
p
p Bffiffi

e
p ðSþ þHþÞ ¼

ffiffiffi
z
p
�

4ðz� eip=4Þ

1

H�
½p�� þ eip=4

ffiffiffi
p
p Bffiffi

e
p S�, (49)

where the functions Hþ and H� come from writing the function HðzÞ as the product of plus and minus
functions

HðzÞ ¼
jzj þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p
2
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � i

p ¼ HþðzÞH�ðzÞ, (50)

and Sþ and S� come from writing the function SðzÞ as the sum of plus and minus functions

SðzÞ ¼
ffiffiffi
z
p
�ffiffiffi
z
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ

ffiffi
i
pp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z�

ffiffi
i
pp � 1

" #
Hþ ¼ SþðzÞ þ S�ðzÞ. (51)

The decomposition of H and S in plus and minus functions is explained in the Appendices A and B,
respectively.

It is shown in Appendix A that as z tends to infinity, Hþ and H� tend to unity in respective half-planes of
regularity and in Appendix B that Sþ and S� tend to zero. The total velocity uz must be finite at the edge of
the plate so uzþ must correct for that of the potential solution, i.e. uzþ�constant=

ffiffiffi
z
p
þ, from Eq. (20) as z tends

to infinity in the plus region.
At the same time, the pressure differential at X ¼ 0 can be singular but has to be integrable (giving a finite

force on the plate). Hence the left-hand side of Eq. (49) is bounded by a constant as jzj ! 1 in the plus half-
plane, while the right-hand side tends to zero as jzj ! 1 in the minus half-plane, both expressions coexisting
on the real line. Thus by Liouville’s theorem both sides of Eq. (49) are equal to an entire function that must be
identically zero.

From Eq. (49) we obtain the two equations with two unknowns, and the pressure differential and the
vertical velocity are calculated. Using the expansions of the product and sum decomposition of functions HðzÞ
and SðzÞ from Appendices A and B, taking the inverse transform and changing the coordinates back to x and z

one obtains

½p�jx!1�2
ffiffiffi
2
p

e�ip=4eB
1ffiffiffiffiffiffiffiffiffiffiffi
1� x
p . (52)

This correction to the pressure differential now has a damping component in phase with the velocity of the
plate, and an added mass contribution out of phase with the velocity of the plate. Singular behaviour of this
pressure differential is observed at the free edge of the plate, as expected.
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The correction to the vertical velocity of the plate can also be calculated from the functional equation using
the expansions for the functions Hþ, H�, Sþ and S� from Appendices A and B. Once the inverse transform is
taken, it gives in x and z coordinates

uzjx¼1þ�
Bffiffiffiffiffiffiffiffiffiffiffi

x� 1
p . (53)

One can see that this result cancels the singular behaviour of the vertical velocity on the free edge, just outside
the plate, presented in Eq. (20).

3. Equation of motion of the vibrating cantilever plate

The balance of forces per unit surface area on the plate gives the equation of motion of the plate. Now the
fluid reaction on the plate, f fluid, can be calculated by superposing the solutions of the pressure differential in
the potential flow problem and the correction to the potential flow solution from Eq. (52). Since the full
expression from the potential problem is quite complex, a simplification is made to facilitate the coupling of
the motion of the plate with the fluid. Since the correction is important mainly at the edge x ¼ 1, the pressure
differential coming from the potential solution is approximated by the value of the potential at the other end
of the plate, x ¼ 0. Using Eqs. (12) and (16) to get the value of the pressure differential at x ¼ 0 and
superposing it to the correction from Eq. (52), one obtains the following fluid force per unit surface area, in
units of pressure,

f fluid ¼ �orLU ½p� ¼ �orLU 2p2iAþ 2
ffiffiffi
2
p

e�ip=4�B
1ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

� �
, (54)

where A and B are weighted averages of uz and take the values from Eqs. (15) and (19).
The driving force f drive is modelled as a sinusoid of frequency o on a line parallel to the clamping at a

distance xf from the clamping. For simplicity, the magnitude of the force is taken to be 1, so

f drive ¼ dðx� xf Þe
�iot, (55)

and is expressed in units of pressure.
Using the expression of the elastic restoring force for a thin bent plate with a small deflection in the z

direction from Ref. [14] while keeping the assumption that all longitudinal cross sections behave in the same
way, the equation of motion of the plate can be reduced to

rshL2 q
2w

qt2
¼ f fluid þ f drive �

1

12
Eh3 q

4w

qx4
, (56)

where rs is the density of the plate, w is the dimensionless deflection of the plate, and h is the dimensionless
thickness, both scaled with respect to the plate length L, and E is the Young’s modulus of the plate.

We are interested in the steady-state vibration and thus the time dependence can be removed by taking, in
an abuse of notation, w ¼ we�iot and dropping the factor e�iot. Eq. (56) can then be rewritten as

q4wðx;oÞ
qx4

� cðoÞ4wðx;oÞ ¼ gðx;oÞ, (57)

where c takes the following expression:

c ¼
3rs

E

� �1=4
2oL

h

� �1=2

(58)

and

gðx;oÞ ¼
12

Eh3
dðx� xf Þ � orLU 2p2iAþ 2

ffiffiffi
2
p

e�ip=4�orB
1ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

� �� �
, (59)

where A and B are weighted averages of uz.
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The solution of Eq. (57) can be constructed from the general solution and a particular solution wp,

wðxÞ ¼ wpðxÞ þ C1 sinh cxþ C2 cosh cxþ C3 sin cxþ C4 cos cx, (60)

where C1 to C4 are constants to be determined from the boundary conditions. The particular solution wp can
be obtained from the Green’s function Gðx;x0Þ for Eq. (57) before applying the boundary conditions. This
Green’s function is given in Appendix C, Eq. (C.2), and using it one can write

wp ¼

Z 1

0

Gðx;x0Þgðx0Þdx0. (61)

This expression of wp depends on A and B which are unknown because uz is unknown.
The boundary conditions for the plate are zero displacement and the first derivative of the displacement

equal to zero at the clamped end,

wjx¼0 ¼ 0, (62)

qw

qx

����
x¼0

¼ 0. (63)

The two boundary conditions at the free end are no bending moments and no shearing forces, which can be
written as

q2w
qx2

����
x¼1

¼ 0, (64)

q3w
qx3

����
x¼1

¼ 0. (65)

For a given frequency, one can calculate the displacement by solving a system of six equations, four
corresponding to the boundary conditions of the plate, Eqs. (62)–(65), and the two expressions for A and B,
Eqs. (15) and (19). In the expressions for A and B, the vertical velocity can be written as the first derivative of
w over time, and taking into account the scaling of the variables,

uz ¼ �io
L

U
w, (66)

where the displacement w takes the expression shown in Eq. (60). The system of six equations can then be
solved to find the values of C1 to C4, A and B for the given frequency. Then back in Eq. (60) the displacement
for that frequency at any x can be calculated. The displacement is a complex number with a certain modulus
giving the amplitude of the vibration and an argument giving the phase of the displacement with respect to the
driving force. To obtain the frequency response, the complex displacements corresponding to an array of
frequencies have to be calculated.

4. Another proposal for calculation of the fluid reaction force

In this section we propose another way of obtaining the fluid force. The method is asymptotic and similar to
the previous one, and differs only in the boundary conditions in the potential flow problem. Previously the
clamping was represented by a finite constant pressure on the negative side of the x-axis. In this section the
clamping is approximated by a rigid semi-infinite plate and no vertical velocity is allowed at xo0, z ¼ 0.

The boundary conditions are described as follows:
�
 The tangential velocity, ux, is continuous and equal to zero

uxjz¼0þ ¼ uxjz¼0� ¼ 0. (67)

This condition is not satisfied by the potential flow solution, and to account for it the solution of the
potential flow will need to be corrected for.
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�
 The vertical velocity, uz, is continuous everywhere and known for the plate, unknown outside the plate for
x41 and zero for xo0

uzjz¼0þ ¼ uzjz¼0� ¼

0; xo0;

uzðxÞ; 0oxo1;

unknown function; x41:

8><
>: (68)
�
 The pressure differential is unknown for the plate ð0oxo1Þ and the semi-infinite region ðxo0Þ, but known
and equal to zero outside the plate for x41, hence

½p� ¼
unknown function; xo1;

0; x41:

(
(69)

We use the solution of Laplace’s equation from Eq. (8), and together with condition (69) the potential at
z ¼ 0þ can be expressed again as in Eq. (12). The expression for the vertical velocity is then obtained by taking
the first derivative of Eq. (8) and taking into account condition (68) as follows

uz ¼

Z 1

�1

f ðsÞ

x� s
ds, (70)

where a Cauchy principal value is taken as before. The distribution f ðsÞ is obtained from the general solution
of the integral equation from Ref. [12] and can be written

f ðsÞ ¼
1

p2
ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

Z 1

0

uzðx
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0
p

x0 � s
dx0, (71)

since uz ¼ 0 for xo0. From Eqs. (12) and (71) the pressure differential for the plate is expressed as a function
of the vertical velocity distribution on the plate,

½p� ¼
2

p
i

Z 1

0

uzðx
0Þ ln

ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0
pffiffiffiffiffiffiffiffiffiffiffi

1� x
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0
p

����
����dx0. (72)

From Eqs. (17) and (71) the no-slip condition is violated, and moreover the tangential velocity has a singular
behaviour at the edge of the plate with

uxjx¼1� ¼
B0ffiffiffiffiffiffiffiffiffiffiffi
1� x
p , (73)

where B0 is a weighted average of the velocity uz over the plate,

B0 ¼
1

p

Z 1

0

uzðx
0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x0
p dx0. (74)

This unwanted tangential velocity takes the same form as in Section 2, only the value of the constant changes.
To obtain the correction from the semi-infinite problem, it is enough to substitute B by B0 in Eq. (52).

The expression for the vertical velocity outside the plate at z ¼ 0 at the edge x ¼ 1 has a singular behaviour
giving

uzjx¼1þ�
�B0ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p (75)

and it is cancelled by the vertical velocity introduced by the semi-infinite problem, Eq. (53).
Finally we construct the expression for the fluid force to be introduced in the solution for the motion of the

plate in a fluid. Eq. (72) is simplified to facilitate the solution of the vibrational problem and replaced by a
constant value, which is the value of the pressure differential at x ¼ 0,

½p� ffi 2p2iA0, (76)
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where A0 is again a weighted average of uz for the plate,

A0 ¼
1

p3

Z 1

0

uzðx
0Þ ln

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0
p

����
����dx0. (77)

If we superpose this pressure differential with the correction from Eq. (52) we obtain the same equation as Eq.
(54) with A and B substituted by A0 and B0,

f fluid ¼ �orLU ½p� ¼ �orLU 2p2iA0 þ 2
ffiffiffi
2
p

e�ip=4�orB0
1ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

� �
. (78)

The method proposed in Section 3 to solve the motion of the plate in a fluid can again be used, with Eqs. (77)
and (74) instead of Eqs. (15) and (19).

5. Results and discussion

The method described above was programmed in MATLAB. Some of the results are shown here in Tables 1
and 2, for plates with different dimensions and made of two different materials vibrating in two different
fluids. The results are presented in terms of resonance frequency of the first eigenmode, o0, and quality factor,
Q, defined as

Q ¼
o0

o1 � o2
, (79)

where o1 and o2 are the frequencies at each side of the resonance that present an amplitude equal to the
amplitude at the resonance divided by

ffiffiffi
2
p

.
The resonance frequency and the quality factor are calculated following [15] using the Levenberg–

Marquardt algorithm [16]. In the tables the resonance frequency of the first eigenmode in a vacuum, ovac, is
also shown (Fig. 4). This value provides a quick check of the results, the resonance frequency in any fluid being
always lower than ovac,

ovac ¼
1:87512

2
ffiffiffi
3
p

h

L

ffiffiffiffiffi
E

rs

s
. (80)

This resonance frequency in a vacuum is easily obtained from the homogeneous equation of the plate with no
external forces, as shown in Ref. [17]. Note that to be consistent with our notation, the thickness h in Eq. (80)
Table 1

Results for various plate dimensions with the clamping represented as a finite pressure, for two different materials (‘m1’ and ‘m2’), and

four different fluids (‘f1’, ‘f2’, ‘f3’and ‘f4’)

Material L (mm) h (mm) Fluid ovac (rad/s) o0 (rad/s) Q b0

m1 1 0.05 f1 407189 405520 4230 28699

m1 1 0.05 f2 407189 144820 91 144820

m1 10 0.01 f1 814 680 49 4814

m1 10 0.01 f2 814 42 14 4240

m1 10 0.05 f1 4072 3913 446 27694

(*)m1 10 0.05 f2 4072 484 47 48375

m1 10 0.05 f3 4072 3916 1676 391632

m1 10 0.05 f4 4072 469 13 3322

m1 50 0.05 f1 163 137 109 24210

m1 10 0.5 f1 40719 40555 13375 287010

m2 10 0.05 f1 5325 5261 1641 37234

m2 10 0.05 f2 5325 1144 74 114410

The parameter b has been calculated at the resonance frequency ðrsðm1Þ ¼ 2330kg=m3, Eðm1Þ ¼ 150GPa, rsðm2Þ ¼ 7810kg=m3,

Eðm2Þ ¼ 860GPa, rðf1Þ ¼ rðf3Þ ¼ 1:2 kg=m3, nðf1Þ ¼ n ðf4Þ ¼ 1:413� 10�5 kg2=s, rðf2Þ ¼ rðf4Þ ¼ 1000kg=m3, nðf2Þ ¼ nðf3Þ ¼
1� 10�6 kg2=s).
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Table 2

Results for a plate with the clamping represented as a semi-infinite rigid plate, two different materials (‘m1’ and ‘m2’), and two different

fluids (‘f1’ and ‘f2’)

Material L (mm) h (mm) Fluid ovac (rad/s) o0 (rad/s) Q b0

m1 10 0.05 f1 4072 3991 498 28251

m1 10 0.05 f2 4072 3065 4 306523

m2 10 0.05 f1 5325 5290 1841 37438

m2 10 0.05 f2 5325 4581 12 458104

The parameter b has been calculated at the resonance frequency. (rsðm1Þ ¼ 2330kg=m3, Eðm1Þ ¼ 150GPa, rsðm2Þ ¼ 7810kg=m3,

Eðm2Þ ¼ 860GPa, rðf1Þ ¼ 1:2kg=m3, nðf1Þ ¼ 1:413� 10�5 kg2=s, rðf2Þ ¼ 1000kg=m3, nðf2Þ ¼ 1� 10�6 kg2=s).
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Fig. 4. Example of resonance peak for the first eigenmode of a plate vibrating in a fluid, corresponding to the 6th row in Table 1 marked

with ð	Þ. The plots correspond to the displacement at x ¼ 1 when the plate is driven by a sinusoid of amplitude 1 which is also the reference

for the phase angles. Part (a) shows the amplitude of this displacement and but (b) shows the phase, as a function of the frequency o.
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is dimensionless, and is obtained by dividing the dimensional thickness by L, as defined in Section 3.
Consequently h=L in Eq. (80) is actually the dimensional thickness divided by L2.

These results show the expected behaviour for all combinations of parameters. The resonance frequency in a
fluid is always lower than in vacuum, getting lower with increasing fluid density. The effect of the viscosity on
the resonance frequency is very small, while the combined effect of density and viscosity on the quality factor
is quite important.

The location of the driving force, xf , has an effect only on the amplitude of the displacement, giving a much
wider amplitude when closer to the free end, x ¼ 1. Also the two cases for modelling the clamping here
described, provide quite a different answer, especially in terms of the resonance frequency. For the semi-
infinite rigid plate (Section 4), frequencies are much closer together for fluids ‘f1’ and ‘f2’, while for the finite
pressure clamping approximation (Section 2), the resonance frequencies for these two fluids are much further
from each other. The semi-infinite rigid plate model described in Section 4 constrains much more the
behaviour of the plate and the influence of the fluid loses importance with respect to the other method.

When coding this method, it is very important to give care and attention to the complex numbers that build
the system of equations to be solved. One can check the numerical results by looking at the phases of the
displacement w, and of A and B (argðwÞ ¼ argðAÞ � p=2 ¼ argðBÞ þ p=2).

6. Conclusion

We have presented analytical expressions for the fluid reaction on a wide cantilever plate vibrating in a
viscous fluid. These equations allow one to couple the structural motion of the cantilever and the fluid motion
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in order to obtain the frequency response of the plate. The method explained above can be extended to apply
to situations where the frequency is not so high at the expense of deriving more terms for the fluid reaction as a
function of b.
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Appendix A. Product decomposition of function HðzÞ

The functions Hþ and H� from Eq. (50) are constructed by taking first the logarithm,

lnH ¼ lnðHþH�Þ ¼ lnHþ þ lnH� (A.1)

and using the Cauchy integral representation for lnHþ and lnH� giving

lnH
 ¼ 

1

2pi

Z þ1
�1

lnHðzÞ

z� z
dz. (A.2)

The principal value of lnHðzÞ is taken and Im z40 for Hþ and Im zo0 for H�. Thus Hþ is analytic in the
positive imaginary half-plane and H� is analytic in the negative imaginary half-plane. The integral expressions
have indented contours of integration when Im z! 0.

Finally, functions HþðzÞ and H�ðzÞ are obtained after identifying the branch points and choosing
convenient branch cuts for the integration

HþðzÞ ¼ exp �
eip=4

p

Z 1

0

arcsinðrÞ

reip=4 þ z
dr

� �
, (A.3)

H�ðzÞ ¼ exp �
eip=4

p

Z 1

0

arcsinðrÞ

reip=4 � z
dr

� �
, (A.4)

where the function arcsinðrÞ returns a value in the interval ½0;p=2�.
Since the main interest lies in the free edge of the plate, corresponding to z tending to infinity, the expansion

of functions Hþ and H� for z tending to infinity are calculated, i.e.,

HþðzÞjz!1�1�
ðp� 2Þ

2p
eip=4

1

z
þ � � � , (A.5)

H�ðzÞjz!1�1þ
ðp� 2Þ

2p
eip=4

1

z
þ � � � (A.6)

Appendix B. Sum decomposition of function SðzÞ

The functions Sþ and S� from Eq. (51) are constructed by using the Cauchy integral representation giving

S
 ¼ 

1

2pi

Z þ1
�1

SðzÞ

z� z
dz. (B.1)

Im z40 for Sþ and Im zo0 for S�. Thus Sþ is analytic in the positive imaginary half-plane and S� is analytic
in the negative imaginary half-plane. The integral expressions have indented contours of integration when
Im z! 0.
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Finally, the function S�ðzÞ is obtained after identifying the branch points and choosing convenient branch
cuts for the integration

S�ðzÞ ¼ �
eip=4

p

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

1� r

r
Hþðre

ip=4Þ

reip=4 � z
dr (B.2)

and

Hþðre
ip=4Þ ¼ exp �

1

p

Z 1

0

arcsinðr0Þ

r0 þ r
dr0

� �
, (B.3)

where the function arcsinðr0Þ returns a value in the interval ½0;p=2�.
Since the main interest lies in the free edge of the plate, corresponding to z tending to infinity, the expansion

of function S� at z tending to infinity is calculated as

S�ðzÞjz!1�
eip=4ffiffiffi

2
p

1

z
þ

i

2

1

z2
þ � � � (B.4)

The expansion for Sþ for z tending to infinity is obtained by subtracting the expansion for S� (from Eq. (B.4)
from the expansion of SðzÞ),

SþðzÞjz!1�e
ip=4 1�

1ffiffiffi
2
p

� �
1

z
þ i

1

p
�

1

2

� �
1

z2
þ � � � (B.5)

Appendix C. Green’s function for the equation of motion of the plate

The Green’s function for Eq. (57), Gðx;x0Þ satisfies the following continuity conditions at x ¼ x0 with G,
qG=qx and q2G=qx2 continuous, and the third derivative presents a unit jump

lim
�!0þ

q3G
qx3

� 	x¼x0þ�

x¼x0��

¼ 1. (C.1)

Using the symmetry property, we obtain the following Green’s function:

Gðx; x0Þ ¼

1

4c3
fsinhðcðx� x0ÞÞ � sinðcðx� x0ÞÞg; x4x0;

�1

4c3
fsinhðcðx� x0ÞÞ � sinðcðx� x0ÞÞg; xox0:

8>><
>>: (C.2)
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